Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture
نویسندگان
چکیده
We describe evidence consistent with the proposal that the visual system contains a parallel array of size-tuned mechanisms sensitive to orientation texture-defined (OTD) form, and propose that the relative activity of these mechanisms determines spatial frequency discrimination threshold for OTD gratings. Using a pattern of short lines we measured spatial frequency discrimination thresholds for OTD gratings and luminance-defined (LD) gratings. For OTD gratings, the orientation of texture lines varied sinusoidally across the bars of the gratings, but line luminance was constant. For LD gratings, line orientation was constant, but line luminance varied sinusoidally across the bars of the grating. When the number of texture lines (i.e. spatial samples) per grating cycle was below about six, spatial sampling strongly affected both the spatial frequency discrimination and grating detection thresholds for OTD and LD gratings. However, when the number of spatial samples per grating cycle exceeded about six, plots of both discrimination threshold and detection threshold were different for OTD and LD gratings. For an OTD grating of any given spatial frequency, spatial frequency discrimination threshold fell as the number of samples per grating cycle was increased while holding texture line length constant: the lower limit was reached at six to ten samples per cycle. When we progressively increased the viewing distance (keeping the cycles per degree (cpd) constant), spatial frequency discrimination threshold reached a lower limit and increased thereafter. We propose that this minimum threshold represents a balance between opposing effects of the number of samples per grating cycle and the length of texture lines, and approaches the absolute physiological lower limit for OTD gratings. Spatial frequency discrimination was possible up to at least 7 cpd. Grating acuity for an OTD grating was considerably lower than the physiological limit for LD gratings, presumably because detectors of OTD form include a spatial integration stage following the processing of individual lines. For an LD grating, discrimination threshold fell as the number of samples per grating cycle was increased and asymptoted at six to ten samples per cycle. Spatial frequency discrimination thresholds for OTD and LD gratings were similar at low spatial frequencies (up to 3-4 cpd), but increased more steeply for OTD gratings at high spatial frequencies. For both OTD and LD gratings, discrimination threshold fell steeply as the number of grating cycles was increased from 0.5 to ca. 2.5 cycles, and thereafter decreased more slowly or not at all suggesting that, for both OTD and LD gratings, spatial frequency discrimination can be regarded as a special case of line interval or bar width discrimination. As orientation contrast was progressively increased, discrimination threshold for an OTD grating fell steeply up to about four to five times grating detection threshold, then saturated. This parallels the effect of luminance contrast on discrimination threshold for an LD grating.
منابع مشابه
Luminance spatial frequency differences facilitate the segmentation of superimposed textures
Do superimposed textures segregate on the basis of a difference in their luminance spatial frequency? We addressed this question using orientation-gratings, which consist of dense arrays of Gabor micropatterns whose orientations vary sinusoidally across space. Two orientation gratings of the same texture spatial frequency were combined in anti-phase, to produce a 'dual-modulation' orientation g...
متن کاملOrientation-tuned spatial filters for texture-defined form
Detection threshold for an orientation-texture-defined (OTD) test grating was elevated after adapting to an OTD grating of high orientation contrast. Threshold elevation was greatest for a test grating parallel to the adapting grating, and fell to zero for a test grating perpendicular to the adapting grating. We conclude that the human visual system contains an orientation-tuned neural mechanis...
متن کاملDetection and discrimination of texture modulations defined by orientation, spatial frequency, and contrast.
We sought to determine whether the detection and the identification of texture modulations are mediated by a common mechanism. On each trial two textures were presented, one of which contained a modulation in orientation (OM), spatial frequency (FM), or contrast (CM). Observers were required to indicate whether the modulated texture was presented in the first or the second interval as well as t...
متن کاملContrast detection and direction discrimination of drifting gratings.
Observers performed simple detection and left/right discrimination of drifting sinusoidal gratings. Ratio of detection to discrimination sensitivities was measured under variations in several experimental parameters. In the first experiment, it was found that combinations of spatial and temporal frequency which resulted in the same velocity produced similar detection-discrimination ratios. At a...
متن کاملInconsistent channel bandwidth estimates suggest winner-take-all nonlinearity in second-order vision
The processing of texture patterns has been characterized by a model that postulates a first-stage linear filter to highlight a component texture, a pointwise rectification stage to convert contrast for the highlighted texture into mean response strength, followed by a second-stage linear filter to detect the texture-defined pattern. We estimated the spatial-frequency bandwidth of the second-st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 38 شماره
صفحات -
تاریخ انتشار 1998